
RestPose Python bindings
Release 0.7.7

Richard Boulton

May 09, 2012

CONTENTS

i

ii

RestPose Python bindings, Release 0.7.7

RestPose is an easy-to-use search server, built on top of Xapian. This module is a Python client for it, allowing access
to all the features provided by RestPose in a natural way.

CONTENTS 1

http://restpose.readthedocs.org/
http://xapian.org/

RestPose Python bindings, Release 0.7.7

2 CONTENTS

CHAPTER

ONE

OVERVIEW

So, let’s suppose you have some documents that you want to search. The first thing to do is to get the RestPose server
installed and running; see the RestPose documentation on Installation for details of this.

Then, you can install the RestPose python client (we suggest in a virtualenv), using:

$ pip install restpose

Indexing some documents is as simple as:

import restpose
server = restpose.Server(’http://localhost:7777’)
doc = { ’text’: ’Hello world’, ’tag’: ’A tag’ }
coll = server.collection("test_coll")
coll.add_doc(doc, doc_type="blurb", doc_id=1)

And then, searching those documents can be done by:

>>> s = coll.doc_type("blurb").field("text").text("Hello")
>>> s.matches_estimated
1
>>> s[0].data == {’text’: [’Hello world’],
... ’tag’: [’A tag’],
... ’type’: [’blurb’],
... ’id’: [’1’]}
True

The rest of this overview goes through some of the subtle details and extra features we just skipped over in that
example.

1.1 Connecting to the server

Once the server is running, it provides a REST API over HTTP. The server runs on port 7777 by default, and for the
rest of this tutorial we’ll assume that it’s running on the same machine as you’re using the python client on, and is
running on the default port.

from restpose import Server
server = Server(’http://localhost:7777’)

3

http://readthedocs.org/docs/restpose/en/latest/install.html#installation

RestPose Python bindings, Release 0.7.7

1.2 Adding a document

As far as RestPose is concerned, a document is a set of fields, each of which has a name, and each of which has one or
more values. Documents also have types and IDs. The document type is used to determine how each field should be
interpreted; the configuration of how to index and search each field can be specified for each document type (though
you will often be able to use RestPose’s default configuration). The ID is used to identify the document, and is unique
within a given type.

IDs must be specified when sending a document to the RestPose server; the python client currently doesn’t automati-
cally allocate IDs if they are missing.

Documents are stored within collections, which are just named groups of documents. It is not currently possible to
search transparently across multiple collections. Collections should be used when you have independent projects, but
wish to share the resources of a server across them.

doc = { ’text’: ’Hello world’, ’tag’: ’A tag’ }
coll = server.collection("test_coll")
coll.add_doc(doc, doc_type="blurb", doc_id=1)

If all goes well, within a short time (usually a fraction of a second), the document will have been indexed. However,
using the above calls the changes won’t be fully applied until a few seconds later (by default, until 5 seconds of
inactivity), and the new document will be available for searching until this has occurred. This delay is deliberate, and
is to allow bulk updates to be performed efficiently, but can be avoided using a checkpoint.

1.3 Checkpoints

Documents are added asynchronously; it’s important to realise that the add_doc function will only report an error if
it is unable to insert the document into the indexing queue on the server (eg, because the server is down, or overloaded).
It will not report an error if the document is invalid in some way, and the document will not immediately be available
for searching.

In addition, documents are processed in parallel; if I add document A and then add document B, it is quite possible for
processing of document B to finish before processing of document A.

There is of course, a way to check for errors, to ensure the ordering of particular modification operations and also to
ensure that changes are made ready for searching without the usual wait for inactivity. These tasks are all performed
using CheckPoints.

>>> checkpt = coll.checkpoint().wait()
>>> checkpt.total_errors, checkpt.errors, checkpt.reached
(0, [], True)

Essentially, what’s happening here is that the checkpoint is put into the indexing queue in such a way that it will be
processed only when all tasks placed onto the queue before it have been completed, and that it will be processed before
any tasks placed onto the query after it are started. When it is processed, the preceding changes are committed (ie,
made available for searching).

The wait method blocks until the checkpoint has been processed. Alternatively, if you don’t want to block, the
checkpt.reached property will reflect the current state of the checkpoint on the server.

Note: Currently, the server doesn’t support long-polling for checkpoint status, so the wait() method is implemented
by polling the server periodically. This implementation is likely to be improved in future.

4 Chapter 1. Overview

RestPose Python bindings, Release 0.7.7

It is also possible to make a checkpoint which doesn’t cause a commit, in order to collect errors and control ordering
of processing operations. To do this, simply pass commit=False to the Collection.checkpoint method when
creating the checkpoint.

1.4 Field types

Todo

This section needs rewriting for clarity (sorry!).

There are many different ways in which the data supplied in a field can be processed and made available for searching.
The way in which each field is indexed is controlled by the collection configuration, and can be adjusted separately for
each document type.

Essentially, the configuration maps each field name to a field type, and associates various parameters with those field
types.

Additionally, when a new field is seen (ie, one for which the configuration doesn’t have an entry), the configuration
contains a list of patterns which are applied in order, and the first match is used to configure the new field.

Currently, the RestPose Python client doesn’t provide much support to help you work with collection configuration;
it just provides a mechanism for getting and setting the full configuration as a hierarchical structure. The full config-
uration of a collection may be obtained from the server using the the Collection.config property. This may
then be modifed and applied back to the property. For example, to add a pattern to the default configuration for a new
document type (ie, to the configuration which will be used when a new document type is seen for the first time):

>>> c = coll.config
>>> c[’default_type’][’patterns’].insert(0,
... [’test’,
... {’group’: ’T’, ’max_length’: 10, ’too_long_action’: ’error’,
... ’type’: ’exact’}])
>>> coll.config = c

After the above, adding a new document to the collection with a previously unseen document type would cause the
configuration for indexing the document type to process a field called “test” for exact matching, in group “T”, but
produce an error if any entries in the “test” field were longer than 10 characters.

Details of the field types available, the parameters which can be applied to them, and the default list of patterns, are
contained in the server documentation: Types and Schemas.

1.5 Searching

There are several ways to build up and perform a search in RestPose. Here’s a simple example:

>>> search = coll.field(’text’).text(’Hello’)
>>> print len(search)
1
>>> search[0].data
{u’text’: [u’Hello world’], u’tag’: [u’A tag’], u’type’: [u’blurb’], u’id’: [u’1’]}

By convention, the word query is used in RestPose to refer to a set of operations which can be used to match and
associate a weight with a set of documents. The word search is then used as a noun to refer to an object comprising
a query, and any other options involved in performing the search (for example, the offset of the first result to retrieve

1.4. Field types 5

http://readthedocs.org/docs/restpose/en/latest/collections.html#types-and-schemas

RestPose Python bindings, Release 0.7.7

from the server, or options controlling additional information to retrieve). The word search is also used as a very to
refer to the operation of performing a search.

Queries can be constructed in several ways. Firstly, a query can be created which searches the contents of a named
field.

>>> query = coll.field.text.parse(’Hello’)

In this case, query will represent a query on the “text” field, and will use the query parser configured for that field
to build a query from the word “Hello”. The query will also be bound to the collection coll, so that when it is
performed, the entire collection will be searched. We say that the target of the query is the entire collection.

Note: if the field name is not a valid python identifier, or is stored in a variable, you can use an alternative syntax of
calling the coll.field property, passing the field name as a parameter. For example:

>>> query = coll.field(’text’).parse(’Hello’)

A query can also be created which is bound to a document type within a collection; when such a query is performed,
only documents of the given type will be considered for matching. For example, the following command will produce
a query which has a target of the “blurb” document type within the collection.

>>> query = coll.doc_type(’blurb’).field(’text’).text(’Hello’)

A query can also be created which is bound to neither a document type nor a collection; before such a query can be
performed it must be given a target (which can be done by combining it with a query which is already associated with
a target, or by explicitly setting a target using the set_target method.).

>>> from restpose import Field
>>> query = Field(’text’).text(’Hello’)

What’s happening behind the scenes here is that the field method and the Field factory produce a
FieldQuerySource object, which provides various methods for creating queries.

Some query types can be performed across all fields; for this, the AnyField factory can be used to create unbound
queries, or the any_field method can be used to create bound queries on collections or document types. The
documentation for each query type indicates whether it is valid to search across all fields with that query type.

1.5.1 Primitive query types

There are several “primitive” query types other than the “text” type described so far. Most of these are only applicable
to fields which have been configured in particular ways. For full details of the search options available in RestPose,
see the server documentation on Searches; this section will discuss how to construct each type of query in Python.

• FieldQuerySource.text(text, op=’phrase’, window=None)
Create a query for a piece of text in the field.

This is a simple search for a matching sequences of words (subject to whatever processing has been per-
formed on the field to conflate variant forms of words, such as stemming or word splitting for CJK text).

Parameters

– text – The text to search for. If empty, this query will match no results.

– op – The operator to use when searching. One of “or”, “and”, “phrase” (ordered proxim-
ity), “near” (unordered proximity). Default=”phrase”.

– window – Only relevant if op is “phrase” or “near”. Window size in words within which
the words in the text need to occur for a document to match; None=length of text. Integer
or None. Default=None

6 Chapter 1. Overview

http://readthedocs.org/docs/restpose/en/latest/search_json.html#searches

RestPose Python bindings, Release 0.7.7

Example Search for documents in which the “text” field contains text matching the phrase
“Hello world”.

>>> query = coll.field.text.text("Hello world")

• FieldQuerySource.parse(text, op=’and’)
Parse a structured query, searching the field.

Unlike text, this allows various operators to be used in the query; for example, parentheses may be used,
and operators such as “AND” may be used

Todo

Document the operators permitted.

Beware that the parser is unable to make sense of some query strings (eg, those with mismatched paren-
theses). If such a query string is used, an error will be returned by the server when the search is performed.

Parameters

– fieldname – The field to search within.

– text – Text to search for. If empty, this query will match no results.

– op – The default operator to use when searching. One of “or”, “and”. Default=”and”.

Example Search for documents in which the “text” field contains both “Hello” and “world”, but
not “big”.

>>> query = coll.field.text.text("Hello world -big")

• FieldQuerySource.is_in(values)
Create a query for fields which exactly match the given values.

A document will match if at least one of the stored values for the field exactly matches at least one of the
given values.

This query type is currently available only for “exact”, “id” and “cat” field types.

Parameters value – A container holding the values to search for. As a special case, if a string is
supplied, this is equivalent to supplying a container holding that string.

Example Search for documents in which the “tag” field has a value of “edam”, “cheddar” or
“leicester”.

>>> query = coll.field.tag.is_in([’edam’, ’cheddar’, ’leicester’])

Search for documents in which the “tag” field has a value of “edam”.

>>> query = coll.field.tag.is_in(’edam’)

• FieldQuerySource.equals(value)
Create a query for fields which exactly match the given value.

Matches documents in which the supplied value exactly matches the stored value.

This query type is currently available only for “exact”, “id” and “cat” field types.

This query type may be constructed using the == operator, or the equals method.

Parameters value – The value to search for.

1.5. Searching 7

RestPose Python bindings, Release 0.7.7

Example Search for documents in which the “tag” field has a value of “edam”.

>>> query = coll.field.tag.equals(’edam’)

Or, equivalently (but less conveniently for chained calls)

>>> query = (coll.field.tag == ’edam’)

• FieldQuerySource.range(begin, end)
Create a query for field values in a given range.

Matches documents in which one of the stored values in the field are in the specified range, including both
the begin and end values.

This type is currently available only for “double”, “date” and “timestamp” field types.

Parameters

– begin – The start of the range.

– end – The end of the range.

Example Search for documents in which the “num” field has a value in the range 0 to 10 (in-
cluding the endpoints).

>>> query = coll.field.num.range(0, 10)

• FieldQuerySource.is_descendant(categories)
Create a query for field values which are categories which are descendants of one of the given categories.

A document will match if at least one of the stored values for the field exactly matches a descendant of the
given categories.

This query type is available only for “cat” field types.

Parameters categories – A container holding the categories to search for. As a special case, if
a string is supplied, this is equivalent to supplying a container holding that string.

Example Search for documents in which the “tag” field is a descendant of a value of “cheese”

>>> query = coll.field.tag.is_descendant(’cheese’)

or, equivalently:

>>> query = coll.field.tag.is_descendant([’cheese’])

See also: Taxonomies and categories

• FieldQuerySource.is_or_is_descendant(categories)
Create a query for field values which are categories which are descendants of one of the given categories.

A document will match if at least one of the stored values for the field exactly matches a descendant of the
given categories.

This query type is available only for “cat” field types.

Parameters categories – A container holding the categories to search for. As a special case, if
a string is supplied, this is equivalent to supplying a container holding that string.

Example Search for documents in which the “tag” field has a value of “cheese”, or has a value
which is a descendant of “cheese”.

8 Chapter 1. Overview

RestPose Python bindings, Release 0.7.7

>>> query = coll.field.tag.is_or_is_descendant(’cheese’)

or, equivalently:

>>> query = coll.field.tag.is_or_is_descendant([’cheese’])

See also: Taxonomies and categories

• FieldQuerySource.exists()
Search for documents in which the field exists.

This type may be used to search across all fields.

Example Search for documents in which the “text” field exists.

>>> query = coll.field.text.exists()

Search for documents in which any field exists.

>>> query = coll.any_field.exists()

• FieldQuerySource.nonempty()
Search for documents in which the field has a non-empty value.

This type may be used to search across all fields.

Example Search for documents in which the “text” field has a non-empty value.

>>> query = coll.field.text.nonempty()

Search for documents in which any field has a non-empty value.

>>> query = coll.any_field.nonempty()

• FieldQuerySource.empty()
Search for documents in which the field has an empty value.

This type may be used to search across all fields.

Example Search for documents in which the “text” field has an empty value.

>>> query = coll.field.text.empty()

Search for documents in which any field has an empty value.

>>> query = coll.any_field.empty()

• FieldQuerySource.has_error()
Search for documents in which the field produced errors when parsing.

This type may be used to search across all fields.

Example Search for documents in which the “text” field had an error when parsing.

>>> query = coll.field.text.has_error()

Search for documents in which any field had an error when parsing.

1.5. Searching 9

RestPose Python bindings, Release 0.7.7

>>> query = coll.any_field.has_error()

Note: it is perfectly possible to construct a query on a field which cannot be performed due to the way in which a
field has been configured; many queries can only be performed on certain types of field. If you do this, you’ll get an
error when you try to perform the search, not when you construct the query.

There are also a couple of primitive query types which aren’t specific to a field, and can be created by methods of
Collection or DocumentType.

• QueryTarget.all()
Create a query which matches all documents.

• QueryTarget.none()
Create a query which matches no documents.

1.5.2 Combining queries

Queries can be combined using several operators to build a query tree. These operators can be used to produce various
boolean combinations of matching results, and also to influence the way in which weights are combined.

There are many ways in which queries can be combined; the simplest to describe are the boolean operations:

• Boolean AND

A query can be constructed which only returns documents which match all of a set of subqueries.

class restpose.query.And(*queries, **kwargs)
A query which matches only the documents matched by all subqueries.

The weights are the sum of the weights in the subqueries.

Example A query returning documents in which the tag field contains both the value ’foo’
and the value ’bar’.

>>> query = And(Field(’tag’).equals(’foo’),
... Field(’tag’).equals(’bar’))

Such a query can also be constructed by joining two queries with the & operator:

Query.__and__(other)
Produce an And query combining this query with other.

Parameters other – The query to combine with this query.

Example A query returning documents in which the tag field contains both the value ’foo’
and the value ’bar’.

>>> query = Field(’tag’).equals(’foo’) & Field(’tag’).equals(’bar’)

• Boolean OR

A query can be constructed which only returns documents which match all of a set of subqueries.

class restpose.query.Or(*queries, **kwargs)
A query which matches the documents matched by any subquery.

The weights are the sum of the weights in the subqueries which match.

10 Chapter 1. Overview

RestPose Python bindings, Release 0.7.7

Example A query returning documents in which the tag field contains at least one of the value
’foo’ or the value ’bar’.

>>> query = Or(Field(’tag’).equals(’foo’),
... Field(’tag’).equals(’bar’))

Such a query can also be constructed by joining two queries with the | operator:

Query.__or__(other)
Produce an Or query combining this query with other.

Parameters other – The query to combine with this query.

Example A query returning documents in which the tag field contains at least one of the value
’foo’ or the value ’bar’.

>>> query = Field(’tag’).equals(’foo’) | Field(’tag’).equals(’bar’)

• Boolean AND-NOT

Rather than supporting a unary NOT operator (which would return all documents not matched by a query),
RestPose implement an “AndNot” operator, which returns documents which match one query, but do not match
another query.

The lack of a unary NOT operator is because it is not generally possible to efficiently compute a list of all the
documents in a Collection which do not match a query with the datastructures in use by RestPose. Also, because
it is difficult to associate useful scores with documents matching a unary NOT operator, it is rarely desirable
to implement a unary NOT operator. If you really need a unary NOT, you can use an all query as part of the
AndNot operator.

To construct a query which returns documents which match one query, but do not match any of a set of other
queries:

class restpose.query.AndNot(*queries, **kwargs)
A query which matches the documents matched by the first subquery, but not any of the other subqueries.

The weights returned are the weights in the first subquery.

Example A query returning documents in which the tag field contains the value ’foo’ but
not the value ’bar’.

>>> query = AndNot(Field(’tag’).equals(’foo’),
... Field(’tag’).equals(’bar’))

Such a query can also be constructed by joining two queries with the - operator:

Query.__sub__(other)
Produce an AndNot query combining this query with other.

Parameters other – The query to combine with this query.

Example A query returning documents in which the tag field contains the value ’foo’ and
not the value ’bar’.

>>> query = Field(’tag’).equals(’foo’) - Field(’tag’).equals(’bar’)

• Filter

A filter query is a query which returns documents and weights from an initial query, but removes any documents
which do not match another query (or set of queries).

1.5. Searching 11

RestPose Python bindings, Release 0.7.7

The Filter constructor allows a query to be constructed which returns documents which match all of a set of
subqueries, but only returns the weight from the first of these subqueries.

class restpose.query.Filter(*queries, **kwargs)
A query which matches the documents matched by all the subqueries, but only returns weights from the
first subquery.

Example A query returning documents in which the tag field contains the value ’foo’, with
weights from this match, but only where the tag field also contains the value ’bar’.

>>> query = Filter(Field(’tag’).equals(’foo’),
... Field(’tag’).equals(’bar’))

Such a query can also be constructed by joining two queries with the filter method:

Query.filter(other)
Return the results of this query filtered by another query.

This returns only documents which match both the original and the filter query, but uses only the weights
from the original query.

Parameters other – The query to combine with this query.

Example A query returning documents in which the tag field contains the value ’foo’, fil-
tered to only include documents in which the tag field also contains the value ’bar’.

>>> query = Field(’tag’).equals(’foo’).filter(Field(’tag’).equals(’bar’))

• AndMaybe

An AndMaybe query is a query which returns only those documents which match an initial query, but adds
weights from a set of other subqueries. This can be used to adjust weights based on external factors (for
example, matching tags), without causing extra documents to match the query.

The AndMaybe constructor allows a query to be constructed which returns documents which match all of a set
of subqueries, but only returns the weight from the first of these subqueries.

class restpose.query.AndMaybe(*queries, **kwargs)
A query which matches the documents matched by the first subquery, but adds additional weights from the
other subqueries.

The weights are the sum of the weights in the subqueries.

Example A query returning documents in which the tag field contains the value ’foo’, with
weights from this match, but with additional weights for any of these documents in which
the tag field contains the value ’bar’.

>>> query = AndMaybe(Field(’tag’).equals(’foo’),
... Field(’tag’).equals(’bar’))

Such a query can also be constructed by joining two queries with the and_maybe method:

Query.and_maybe(other)
Return the results of this query, with additional weights from another query.

This returns exactly the documents which match the original query, but adds the weight from corresponding
matches to the other query.

Parameters other – The query to combine with this query.

Example A query returning documents in which the tag field contains the value ’foo’, but
with additional weights for any matches containing the value ’bar’.

12 Chapter 1. Overview

RestPose Python bindings, Release 0.7.7

>>> query = Field(’tag’).equals(’foo’).and_maybe(Field(’tag’).equals(’bar’))

• Weight multiplication and division

The weights returned from a query can be modified by multiplying them by a constant (positive) factor. This
can be used to bias the results from part of a combined query over the results from other parts of a combined
query.

The MultWeight constructor allows a query to be constructed which returns exactly the same documents as a
subquery, but with the weight multiplied by a factor.

class restpose.query.MultWeight(query, factor, target=None)
A query which matches all the documents matched by another query, but with the weights multiplied by a
factor.

Example A query returning documents in which the tag field contains the value ’foo’, with
weights multiplied by 2.5.

>>> query = MultWeight(Field(’tag’).equals(’foo’), 2.5)

Build a query in which the weights are multiplied by a factor.

Such a query can also be constructed by use of the * operator, applied to a positive number and a query (the
query may be either on the right hand or left hand side):

Query.__mul__(mult)
Return a query with the weights scaled by a multiplier.

This can be used to build a query in which the weights of some subqueries are increased or decreased
relative to the other subqueries.

Parameters mult – The multiplier to apply. Must be a positive number.

Example A query returning documents in which the tag field contains the value ’foo’ and
the weights are multiplied by 2.5

>>> query = Field(’tag’).equals(’foo’) * 2.5

Weights can also be divided using the / operator.

• Boolean XOR

Finally, RestPose also supports an XOR operator - this is rarely of much practical use, but is included for
completeness of boolean operators.

A query can be constructed which only returns documents which match an odd number of a set of subqueries.

class restpose.query.Xor(*queries, **kwargs)
A query which matches the documents matched by an odd number of subqueries.

The weights are the sum of the weights in the subqueries which match.

Example A query returning documents in which the tag field contains exactly one of the value
’foo’ or the value ’bar’.

>>> query = Xor(Field(’tag’).equals(’foo’),
... Field(’tag’).equals(’bar’))

Such a query can also be constructed by joining two queries with the ^ operator:

Query.__xor__(other)
Produce an Xor query combining this query with other.

1.5. Searching 13

RestPose Python bindings, Release 0.7.7

Parameters other – The query to combine with this query.

Example A query returning documents in which the tag field contains exactly one of the value
’foo’ or the value ’bar’.

>>> query = Field(’tag’).equals(’foo’) ^ Field(’tag’).equals(’bar’)

1.5.3 Performing searches

Now you’ve done all this work to get a query, you’ll almost certainly want to perform a search using it. Fortunately,
this is very easy.

If you wish to control exactly when a search is sent to the server, you can perform a search directly using the search
method on a Collection or DocumentType. This returns a SearchResults object which provides convenient access
to the results as returned from the server.

However, an alternative approach which is often more convenient is also provided: Query objects can be sliced and
subscripted to get at the list of matching documents. They also support various methods and properties to get statis-
tics about things like the number of matching documents. Communication with the server will be performed when
necessary, and the results of such communication will be cached.

For example, suppose we have a query such as:

>>> query = coll.field(’text’).text(’Hello’)

To get the first result of a query:

>>> print query[0]
SearchResult(rank=0, data={u’text’: [u’Hello world’], u’tag’: [u’A tag’], u’type’: [u’blurb’], u’id’: [u’1’]})

Suppose you want the top 10 results. One approach would be to subscript the query with 0, 1, 2, etc. This will actually
be fairly efficient - the Python RestPose client will request pages of results when it doesn’t know how many results
you’re going to want (the default page size is 20, but this can be adjusted by changing the page_size property). You
can even iterate over all matching documents using the standard python iteration mechanism; the iterator will return
SearchResult objects.

>>> for r in query: print r
SearchResult(rank=0, data={u’text’: [u’Hello world’], u’tag’: [u’A tag’], u’type’: [u’blurb’], u’id’: [u’1’]})

To get just the first 10 results of the query, you can slice the query; this returns a TerminalQuery, which has all the
same properties for performing searches as the other Query classes we’ve discussed so far, but may not be combined
with other Query objects. The TerminalQuery can be subscripted and iterated, but (unless the slice has an open upper
end) you are guaranteed that the results will be requested from the server in a single page of size and offset governed
by the slice. Query and TerminalQuery have a common base class of Searchable.

The Xapian search engine, used by RestPose, implements some sophisticated optimisations for calculating the top
results of a query without having to calculate all the possible documents matching a query. To give these optimisations
as much scope to work as possible, you should usually slice your query before accessing individual search results.

To get the total number of matching documents, you can use the len builtin on a Query object. This will cause a
search to be performed if necessary, and will return the exact number of matching documents. However, again, if you
do not need the exact number of matching documents, you can allow the Xapian optimisations to work a lot better by
using a set of properties which produce an estimate and bounds on the number of matching documents. Specifically:

• the matches_lower_bound property returns a lower bound on the number of matching documents.

• the matches_estimated property returns an estimate of the number of matching documents.

• the matches_upper_bound property returns an upper bound on the number of matching documents.

14 Chapter 1. Overview

RestPose Python bindings, Release 0.7.7

• the estimate_is_exact property returns True if the estimate produced by matches_estimated is
known to be the exact number of matching documents.

• the has_more property returns True if there are any matches after the slice represented by the Searchable. This
can be useful for paginating. (If the slice is open-ended, or the Searchable hasn’t been sliced, this returns False).

It is possible to influence how much work Xapian performs when searching to calculate the number of matching
documents. This can be done using the check_at_least method, which produces a new TerminalQuery with
the supplied check_at_least value. When the search is performed, Xapian will check at least this number of
documents for being potential matches to the search (if there are sufficient matches). This ensures that the estimate
and bounds will be exact if fewer documents match than the supplied number; higher check_at_least values will
increase the accuracy of the estimate, but will reduce the speed at which the search is performed.

Setting the check_at_least value can also be useful when calculating additional match information, such as
counting term occurrence, and faceting.

Another useful property is the total_docs property, which returns the number of documents in the target of the
search (ie, in the DocumentType or Collection searched).

1.6 Taxonomies and categories

You may have noticed the is_descendant and is_or_is_descendant methods above. These allow you to
take advantage of the taxonomy feature of RestPose, which allows you to define a hierarchy of categories, and to
search for documents in which a value is not only an exact match for a category, but also to search for documents in
which a value is an exact match for any of the descendants of a category.

The taxonomy structure (ie, the hierarchy of categories) is stored in the collection, and associated with a name. To get
a list of the defined taxonomies in a collection, you can use the Collection.taxonomies method, which returns
a list of names:

>>> taxonomy_names = coll.taxonomies()

To build up a taxonomy, you can make a Taxonomy object from a collection:

>>> taxonomy = coll.taxonomy(’my_taxonomy’)

Parent-child relationships between categories can then be built up using the add_parent and remove_parent
calls.

>>> taxonomy.add_parent(’child_cat’, ’parent_cat’)
{}
>>> taxonomy.remove_parent(’child_cat’, ’parent_cat’)
{}

Individual categories can be added or removed using the add_category and remove_category methods.

The list of top level categories (ie, those without parents) can be retrieved using top, and individual category details
can be retrieved with get_category

These calls can be performed at any time - any document updates which need to be made to reflect the new hierarchy
will be performed as necessary.

Note: If possible, it is better to put the hierarchy in place before adding documents, since this will require less work
in total.

1.6. Taxonomies and categories 15

RestPose Python bindings, Release 0.7.7

Note: Currently, the taxonomy feature is not designed to perform well with large numbers of entries in the category
hierarchy (ie, more than a few hundred entries). Performance improvements are planned, but if you need to use the
feature with deep hierarchies, contact the author on IRC or email.

1.7 Additional information (Facets, Term occurrence)

Often, it is useful to be able to get additional information along with a search result; for example, in a faceted search
application, it is desirable to get counts of the number of matching documents which have each value of a field, which
are then used to display options for narrowing down the search.

Currently, RestPose supports getting two types of additional information: occurrence counts for terms, and co-
occurrence counts for terms. While the occurrence counts feature could be used to support a faceted search interface,
it wouldn’t perform particularly well, because it is fairly slow to access the term occurrence counts. More efficient
support for faceted search (involving storing the required information in a slot allowing for faster access) will be imple-
mented in a future release; if you have urgent need of it, contact the author on IRC (in #restpose on irc.freenode.net).

1.7.1 Term occurrence

RestPose can calculate counts of each term seen in matching documents. To do this, use calc_occur on the Searchable
to indicate that the information should be calculated during the search.

Searchable.calc_occur(group, prefix, doc_limit=None, result_limit=None, get_termfreqs=False, stop-
words=[])

Get occurrence counts of terms in the matching documents.

Warning - fairly slow.

Causes the search results to contain counts for each term seen, in decreasing order of occurrence. The count
entries are of the form: [suffix, occurrence count] or [suffix, occurrence count, termfreq] if get_termfreqs was
true.

Parameters

• group – group to check for terms in.

• prefix – prefix of terms to check occurrence for

• doc_limit – number of matching documents to stop checking after. None=unlimited. Integer
or None. Default=None

• result_limit – number of terms to return results for. None=unlimited. Integer or None.
Default=None

• get_termfreqs – set to true to also get frequencies of terms in the db. Boolean. De-
fault=False

• stopwords – list of stopwords - term suffixes to ignore. Array of strings. Default=[]

Note; if group is specified as an empty string, this can be used to count occurrences of terms in all fields. In this
case, terms will be represented by the group name, followed by a tab, followed by the normal term.

The occurrence counts can then be retrieved via the Searchable.info property. Note that it is usually advisable
to set the check_at_least value for such a search, to ensure that a reasonable number of potential matches will be
included when calculating the occurrence counts. Conversely, because calculating this requires access to the termlists
for each document observed, which is a slow operation, the calc_occur method allows you to limit the number of
documents checked using the doc_limit parameter; you can set this to get a sampling of the documents in the index,
rather than potentially checking all of them (note that such a sampling isn’t unbiased, unfortunately; the documents

16 Chapter 1. Overview

RestPose Python bindings, Release 0.7.7

which are sampled will be the ones nearer the start of the index, which usually means those documents which were
indexed first).

1.7.2 Term co-occurrence

Similarly, Restpose can calculate counts of which term-pairs occur together most often. To do this, use calc_cooccur
on the Searchable to indicate that the information should be calculated during the search.

Searchable.calc_cooccur(group, prefix, doc_limit=None, result_limit=None, get_termfreqs=False,
stopwords=[])

Get cooccurrence counts of terms in the matching documents.

Warning - fairly slow (and O(L*L), where L is the average document length).

Causes the search results to contain counts for each pair of terms seen, in decreasing order of cooccurrence. The
count entries are of the form: [suffix1, suffix2, co-occurrence count] or [suffix1, suffix2, co-occurrence count,
termfreq of suffix1, termfreq of suffix2] if get_termfreqs was true.

Parameters

• group – group to check for terms in.

• prefix – prefix of terms to check co-occurrence for

• doc_limit – number of matching documents to stop checking after. None=unlimited. Integer
or None. Default=None

• result_limit – number of terms to return results for. None=unlimited. Integer or None.
Default=None

• get_termfreqs – set to true to also get frequencies of terms in the db. Boolean. De-
fault=False

• stopwords – list of stopwords - term suffixes to ignore. Array of strings. Default=[]

Note; if group is specified as an empty string, this can be used to count occurrences of terms in all fields. In this
case, terms will be represented by the group name, followed by a tab, followed by the normal term.

The same options as when calculating term occurrence counts apply for controlling the number of documents consid-
ered when calculating this information. Note that calculating this is significantly more expensive than calculating the
pure occurrence counts, so in a large system you might well want to start with small limits, and gradually increase the
counts until performance is no longer acceptable.

1.7.3 Realisers: associating search results with external objects

In many situations, the search index is built from objects which are stored in an external database. When this is the
case, it is desirable to be able to associate a search result with the object in the database which it represents. For
example, in a Django project, a search index might be built up by processing objects from the Django ORM, and it
would be desirable for templates to be able to access the appropriate ORM object directly, rather than just being able
to access the fields stored in the search engine.

This can of course be done manually, but the RestPose client provides some support to make this cleaner and more
convenient. In brief: searches can be provided with a “realiser” function, which is called when neccessary to look up
the objects associated with a set of results; these objects can then be accessed via the SearchResult.object property.

Todo

document how to set realiser functions

1.7. Additional information (Facets, Term occurrence) 17

RestPose Python bindings, Release 0.7.7

Todo

document what realiser functions need to do

Todo

give an example realiser for use with Django

1.7.4 Getting a section of search results based on a particular document

Sometimes, it’s useful to be able to get the section of a search result set containing a particular document, rather than
just a section of a result set based on an offset. For example, imagine you’re providing an interface which allows users
to page through a resultset where documents are constantly being added to the underlying database, so additional
documents may be added at any time.

In this situation, it may be better to ask for the results which follow a particular document, rather than to ask for the
next page of results by a fixed offset. This is particularly true if documents are being returned sorted by most-recent
first; using this technique.

Note that this interface can also be used to get the rank of a given document in a set of search results, without having
to iterate through the search results on the client side.

To get a section of results based on a given document, you can use the fromdoc method on a Searchable.

Note that it is not valid to call fromdoc on a resultset which has already been sliced; doing so will raise a ValueError.
Also, if the fromdoc specified does not exist, or is not in the results of the query, the query will fail when executed,
raising a RequestFailed error.

18 Chapter 1. Overview

CHAPTER

TWO

RESTPOSE MODULES

2.1 Client

The RestPose client mirrors the resources provided by the RestPose server as Python objects.

class restpose.client.Server(uri=’http://127.0.0.1:7777’, resource_class=None, re-
source_instance=None, **client_opts)

Representation of a RestPose server.

Allows indexing, searching, status management, etc.

Parameters

• uri – Full URI to the top path of the server.

• resource_class – If specified, defines a resource class to use instead of the default class.
This should usually be a subclass of RestPoseResource.

• resource_instance – If specified, defines a resource instance to use instead of making one
with the default class (or the class specified by resource_class.

• client_opts – Parameters to use to update the existing client_opts in the resource (if re-
source_instance is specified), or to use when creating the resource (if resource_class is
specified).

wait = ‘process’
Type of waiting to use for calls which modify state. Possible options are:

•none: Try pushing tasks onto the queue once, and then return immediately, raising a RequestFailed
exception if the queue is full.

•push: Push tasks onto the queue, blocking until the task is pushed onto the queue. Errors which occur
in processing or indexing can be accessed using checkpoints.

•process: Push tasks onto the queue, blocking until the task has been processed. Errors which occur
during processing will be returned; errors which occur during processing or indexing can be accessed
using checkpoints.

•complete: Push tasks onto the queue, blocking until the task has been fully handled by processing and
indexing. Errors which occur during processing or indexing will be returned, and can also be accessed
using checkpoints.

status
Get server status.

Returns a dictionary holding the status as returned from the server. See the server documentation for
details.

19

RestPose Python bindings, Release 0.7.7

collections
Get a list of existing collections.

Returns a list of collection names (as strings).

collection(coll_name)
Access to a collection.

Parameters coll_name – The name of the collection to access.

Returns a Collection object which can be used to search and modify the contents of the Collec-
tion.

Note: No request is performed directly by this method; a Collection object is simply created which will
make requests when needed. For this reason, no error will be reported at this stage even if the collection
does not exist, or if a collection name containing invalid characters is used.

class restpose.client.FieldQueryFactory(target=None)
Object for creating searches on a field.

Parameters target – The target to pass to the Query objects created.

target = None
The target that will be used when creating Query objects. Defaults to None.

class restpose.client.FieldQuerySource(fieldname, target=None)
An object which generates queries for a specific field.

Parameters

• fieldname – The name of the field to generate queries for. If set to None, will generate
queries across all fields.

• target – The target to generate queries pointing to.

is_in(values)
Create a query for fields which exactly match the given values.

A document will match if at least one of the stored values for the field exactly matches at least one of the
given values.

This query type is currently available only for “exact”, “id” and “cat” field types.

Parameters value – A container holding the values to search for. As a special case, if a string is
supplied, this is equivalent to supplying a container holding that string.

Example Search for documents in which the “tag” field has a value of “edam”, “cheddar” or
“leicester”.

>>> query = coll.field.tag.is_in([’edam’, ’cheddar’, ’leicester’])

Search for documents in which the “tag” field has a value of “edam”.

>>> query = coll.field.tag.is_in(’edam’)

is_descendant(categories)
Create a query for field values which are categories which are descendants of one of the given categories.

A document will match if at least one of the stored values for the field exactly matches a descendant of the
given categories.

This query type is available only for “cat” field types.

20 Chapter 2. RestPose modules

RestPose Python bindings, Release 0.7.7

Parameters categories – A container holding the categories to search for. As a special case, if
a string is supplied, this is equivalent to supplying a container holding that string.

Example Search for documents in which the “tag” field is a descendant of a value of “cheese”

>>> query = coll.field.tag.is_descendant(’cheese’)

or, equivalently:

>>> query = coll.field.tag.is_descendant([’cheese’])

is_or_is_descendant(categories)
Create a query for field values which are categories which are descendants of one of the given categories.

A document will match if at least one of the stored values for the field exactly matches a descendant of the
given categories.

This query type is available only for “cat” field types.

Parameters categories – A container holding the categories to search for. As a special case, if
a string is supplied, this is equivalent to supplying a container holding that string.

Example Search for documents in which the “tag” field has a value of “cheese”, or has a value
which is a descendant of “cheese”.

>>> query = coll.field.tag.is_or_is_descendant(’cheese’)

or, equivalently:

>>> query = coll.field.tag.is_or_is_descendant([’cheese’])

equals(value)
Create a query for fields which exactly match the given value.

Matches documents in which the supplied value exactly matches the stored value.

This query type is currently available only for “exact”, “id” and “cat” field types.

This query type may be constructed using the == operator, or the equals method.

Parameters value – The value to search for.

Example Search for documents in which the “tag” field has a value of “edam”.

>>> query = coll.field.tag.equals(’edam’)

Or, equivalently (but less conveniently for chained calls)

>>> query = (coll.field.tag == ’edam’)

range(begin, end)
Create a query for field values in a given range.

Matches documents in which one of the stored values in the field are in the specified range, including both
the begin and end values.

This type is currently available only for “double”, “date” and “timestamp” field types.

Parameters

• begin – The start of the range.

2.1. Client 21

RestPose Python bindings, Release 0.7.7

• end – The end of the range.

Example Search for documents in which the “num” field has a value in the range 0 to 10 (in-
cluding the endpoints).

>>> query = coll.field.num.range(0, 10)

distscore(center, max_range=None)
Create a query for geospatial field values based on distance.

Matches documents in which one of the stored values in the field is within the specified range of the center
point (in meters on the surface of the earth).

This type is currently available only for “lonlat” field types.

Parameters

• center – The center for the query. Either a (lon, lat) tuple, or an object with “lon” and
“lat” properties; in either case, the longitude and latitude must be stored as numbers.

• max_range – The maximum range (in meters) of documents to return; if None, returns
documents with no maximum range.

Example Search for documents in which the “num” field has a value in the range 0 to 10 (in-
cluding the endpoints).

>>> query = coll.field.latlon.distscore([0.0, 0.0], 1609.344)

text(text, op=’phrase’, window=None)
Create a query for a piece of text in the field.

This is a simple search for a matching sequences of words (subject to whatever processing has been per-
formed on the field to conflate variant forms of words, such as stemming or word splitting for CJK text).

Parameters

• text – The text to search for. If empty, this query will match no results.

• op – The operator to use when searching. One of “or”, “and”, “phrase” (ordered proxim-
ity), “near” (unordered proximity). Default=”phrase”.

• window – Only relevant if op is “phrase” or “near”. Window size in words within which
the words in the text need to occur for a document to match; None=length of text. Integer
or None. Default=None

Example Search for documents in which the “text” field contains text matching the phrase
“Hello world”.

>>> query = coll.field.text.text("Hello world")

parse(text, op=’and’)
Parse a structured query, searching the field.

Unlike text, this allows various operators to be used in the query; for example, parentheses may be used,
and operators such as “AND” may be used

Todo

Document the operators permitted.

22 Chapter 2. RestPose modules

RestPose Python bindings, Release 0.7.7

Beware that the parser is unable to make sense of some query strings (eg, those with mismatched paren-
theses). If such a query string is used, an error will be returned by the server when the search is performed.

Parameters

• fieldname – The field to search within.

• text – Text to search for. If empty, this query will match no results.

• op – The default operator to use when searching. One of “or”, “and”. Default=”and”.

Example Search for documents in which the “text” field contains both “Hello” and “world”, but
not “big”.

>>> query = coll.field.text.text("Hello world -big")

exists()
Search for documents in which the field exists.

This type may be used to search across all fields.

Example Search for documents in which the “text” field exists.

>>> query = coll.field.text.exists()

Search for documents in which any field exists.

>>> query = coll.any_field.exists()

nonempty()
Search for documents in which the field has a non-empty value.

This type may be used to search across all fields.

Example Search for documents in which the “text” field has a non-empty value.

>>> query = coll.field.text.nonempty()

Search for documents in which any field has a non-empty value.

>>> query = coll.any_field.nonempty()

empty()
Search for documents in which the field has an empty value.

This type may be used to search across all fields.

Example Search for documents in which the “text” field has an empty value.

>>> query = coll.field.text.empty()

Search for documents in which any field has an empty value.

>>> query = coll.any_field.empty()

has_error()
Search for documents in which the field produced errors when parsing.

This type may be used to search across all fields.

Example Search for documents in which the “text” field had an error when parsing.

2.1. Client 23

RestPose Python bindings, Release 0.7.7

>>> query = coll.field.text.has_error()

Search for documents in which any field had an error when parsing.

>>> query = coll.any_field.has_error()

class restpose.client.QueryTarget
An object which can be used to make and run queries.

field = None
Factory for field-specific queries.

any_field = None
Pseudo field for making queries across all fields.

all()
Create a query which matches all documents.

none()
Create a query which matches no documents.

find(q)
Apply a Query to this QueryTarget.

Parameters q – A Query object which will have the target applied to it.

set_realiser(realiser)
Set the function to get objects associated with results.

This may be overridden for a particular search by setting a realiser on a Searchable.

search(search)
Perform a search.

Parameters search – is a search structure to be sent to the server, or a Search or Query object.

class restpose.client.Document(collection, doc_type, doc_id)

data

terms

values

class restpose.client.DocumentType(collection, doc_type)

name = None
The name of the document type

add_doc(doc, doc_id=None, wait=None)
Add a document to the collection.

Parameters

• doc – The document to add (as a dictionary of fields).

• doc_id – The ID of the document to add. If omitted, the ID must be present in the docu-
ment.

• wait – The type of waiting to use. Defaults to that specified by server.wait.

24 Chapter 2. RestPose modules

RestPose Python bindings, Release 0.7.7

delete_doc(doc_id, wait=None)
Delete a document with this type from the collection.

get_doc(doc_id)

class restpose.client.Collection(server, coll_name)

name = None
The name of the collection

doc_type(doc_type)

status
The status of the collection.

config
The configuration of the collection.

add_doc(doc, doc_type=None, doc_id=None, wait=None)
Add a document to the collection.

Parameters wait – The type of waiting to use. Defaults to that specified by server.wait.

delete_doc(doc_type, doc_id, wait=None)
Delete a document from the collection.

Parameters wait – The type of waiting to use. Defaults to that specified by server.wait.

get_doc(doc_type, doc_id)
Get a document from the collection.

checkpoint(commit=True, wait=None)
Set a checkpoint on the collection.

This creates a resource on the server which can be queried to detect whether indexing has reached the
checkpoint yet. All updates sent before the checkpoint will be processed before indexing reaches the
checkpoint, and no updates sent after the checkpoint will be processed before indexing reaches the check-
point.

Parameters

• commit – If True, the checkpoint will cause a commit to happen.

• wait – The type of waiting to use. Defaults to that specified by server.wait.

taxonomies()
Get a list of the taxonomy names.

taxonomy(taxonomy_name)
Access a taxonomy, for getting and setting its hierarchy.

delete()
Delete the entire collection.

class restpose.client.CheckPoint(collection, response)
A checkpoint, used to check the progress of indexing.

Create a CheckPoint object.

Parameters

• collection – The collection that the checkpoint is for.

• response – The response returned by the server when creating the checkpoint.

2.1. Client 25

RestPose Python bindings, Release 0.7.7

check_id
The ID of the checkpoint.

This is used to identify the checkpoint on the server.

reached
Return true if the checkpoint has been reached.

May contact the server to check the current state.

Raises CheckPointExpiredError if the checkpoint expired before the state was checked.

errors
Return the list of errors associated with the CheckPoint.

Note that if there are many errors, only the first few will be returned.

Returns None if the checkpoint hasn’t been reached yet.

Raises CheckPointExpiredError if the checkpoint expired before the state was checked.

total_errors
Return the total count of errors associated with the CheckPoint.

This may be larger than len(self.errors), if there were more errors than the CheckPoint is able to hold.

Returns None if the checkpoint hasn’t been reached yet.

Raises CheckPointExpiredError if the checkpoint expired before the state was checked.

wait()
Wait for the checkpoint to be reached.

This will contact the server, and wait until the checkpoint has been reached.

If the checkpoint expires (before or during the call), a CheckPointExpiredError will be raised. Otherwise,
this will return the checkpoint, so that further methods can be chained on it.

class restpose.client.Taxonomy(collection, taxonomy_name)
A taxonomy; a hierarchy of category relationships.

A collection may have many taxonomies, each identified by a name. Each taxonomy contains a set of categories,
and a tree of parent-child relationships (or, to use the correct mathematical terminology, a forest. ie, there may
be many disjoint trees of parent-child relationships).

This class allows the relationships in a taxonomy to be obtained and modified.

name = None
The name of the taxonomy

all()
Get details about the entire set of categories in the taxonomy.

This returns a dict, keyed by category ID, in which each each value is a list of parent category IDs.

Raises ResourceNotFound if the collection or taxonomy are not found.

top()
Get the top-level category names in the taxonomy.

This returns a dict representing the categories in the taxonomy which have no parents. The keys are the
category IDs, and the values are objects with the following properties:

•child_count: The number of direct child categories of this category.

•descendant_count: The number of descendants of this category.

26 Chapter 2. RestPose modules

RestPose Python bindings, Release 0.7.7

Raises ResourceNotFound if the collection or taxonomy are not found.

get_category(category)
Get the details of a category in the taxonomy.

This returns an object with the following properties:

•“parents”: A list of the category IDs of any direct parents of the category.

•“ancestors”: A list of the category IDs of any ancestors of the category.

•“children”: A list of the category IDs of any direct children of the category.

•“descendants”: A list of the category IDs of any descendants of the category.

Raises ResourceNotFound if the collection, taxonomy or category are not found.

add_category(category, wait=None)
Add a category.

Creates the collection, taxononmy and category if they don’t already exist.

Parameters wait – The type of waiting to use. Defaults to that specified by server.wait.

remove_category(category, wait=None)
Remove a category.

Creates the collection and taxononmy if they don’t already exist.

Parameters wait – The type of waiting to use. Defaults to that specified by server.wait.

add_parent(category, parent, wait=None)
Add a parent to a category.

Creates the collection, taxononmy, category and the parent, if necessary.

Parameters wait – The type of waiting to use. Defaults to that specified by server.wait.

remove_parent(category, parent, wait=None)
Remove a parent from a category.

Creates the collection and taxononmy if they don’t already exist.

Parameters wait – The type of waiting to use. Defaults to that specified by server.wait.

remove(wait=None)
Remove this entire taxonomy.

Parameters wait – The type of waiting to use. Defaults to that specified by server.wait.

2.2 Query

Queries in RestPose.

class restpose.query.Searchable(target)
An object which can be sliced or iterated to perform a query.

Create a new Searchable.

target is the object that the search will be performed on. For example, a restpose.Collection or rest-
pose.DocumentType object.

page_size = 20
Number of results to get in each request, if size is not explicitly set.

2.2. Query 27

RestPose Python bindings, Release 0.7.7

set_realiser(realiser)
Set the function to get objects associated with results.

Overrides the default realiser for the query target.

set_target(target)
Return a searchable, with the target set.

If the target was already set to the same value, returns self. Otherwise, returns a copy of target.

search()
Explicitly force a search for this query to be performed.

This ignores any cached results, and always makes a call to the server.

The query should usually be sliced before calling this method. If the slice does not specify an endpoint,
the server will use its internal limit on the number of results, so only a small number of results will be
returned unless a larger number is explictly set by slicing.

Returns The results of the search.

total_docs
Get the total number of documents searched.

offset
Get the offset of the first result item (0-based).

size_requested
Return the requested size of the result set.

This returns None if no limit has been placed on the size of the result set to return.

matches_lower_bound
A lower bound on the number of matches.

matches_estimated
An estimate of the number of matches.

matches_upper_bound
An upper bound on the number of matches.

estimate_is_exact
True if the value returned by matches_estimated is exact, False if it isn’t (or at least, isn’t guaranteed to
be).

has_more
Return True if there are more results after the current slice.

If a limit has been placed on the size of the result set, returns True if there are more results after this limit,
and False otherwise.

If no limit has been placed on the size of the result set, returns False.

fromdoc(doc_type, doc_id, offset=0, size=0, fromdoc_pagesize=None)
Get a subset of the result set, based on the position of a particular base document.

Parameters

• doc_type – The type of the base document.

• doc_id – The ID of the base document.

• offset – The position offset for the start of the results to return. This may be negative to
return results before the base document; if this would result in trying to return results with
a rank less than zero, the calculated rank will be clipped to zero.

28 Chapter 2. RestPose modules

RestPose Python bindings, Release 0.7.7

• size – The number of results to attempt to return.

• fromdoc_pagesize – The number of results to calculate at a time internally when working
out what position the base document is at. This may usually be left as the server default,
but can be varied for performance reasons.

check_at_least(check_at_least)
Set the check_at_least value.

This is the minimum number of documents to try and check when running the search - useful mainly when
you want reasonably accurate counts of matching documents, but don’t want to retrieve all matches.

Returns a new Search, with the check_at_least value to use when performing the search set to the specified
value.

RELEVANCE = <object object at 0x7f01e89293b0>

order_by(field, ascending=None)
Set the sort order.

Parameters

• field – The name of a field, or self.RELEVANCE.

• ascending – True if the sort order should be ascending (ie, smallest values of the field get
the highest weight). If not supplied, this will default to True when sorting by a field, and
False for RELEVANCE.

This may be called multiple times to order by multiple keys. Alternatively, the order_by_multiple method
may be used to do this.

In detail: if this is called when a sort order has already been set, the previous sort order will be applied
before the new one (ie, any items which compare equal in the new order will be returned in the order
determined by the previously set sort order).

order_by_multiple(orderings)
Set the sort order, using multiple keys.

Parameters orderings – A sequence of ordering parameters, as supplied to the order_by()
method, in order of most significant first.

Any existing sort order is removed.

info
Get the list of information items returned by the search.

calc_facet_count(field, doc_limit=None, result_limit=None)
Get facet counts for the given field in the matching documents.

Causes the search results to contain counts for each facet value seen in the field, in decreasing order of
occurrence. The count entries are of the form: [value, occurrence count].

Parameters

• slotname – The name or number of the the slot to read.

• doc_limit – number of matching documents to stop checking after. None=unlimited. In-
teger or None. Default=None

• result_limit – number of terms to return results for. None=unlimited. Integer or None.
Default=None

Note; all types being searched which contain the field must have been configured to store facet values
in the same slot. The default configuration will guarantee this, but if custom configuration results in this
constraint not being satisfied, an error will be returned.

2.2. Query 29

RestPose Python bindings, Release 0.7.7

calc_occur(group, prefix, doc_limit=None, result_limit=None, get_termfreqs=False, stopwords=[])
Get occurrence counts of terms in the matching documents.

Warning - fairly slow.

Causes the search results to contain counts for each term seen, in decreasing order of occurrence. The count
entries are of the form: [suffix, occurrence count] or [suffix, occurrence count, termfreq] if get_termfreqs
was true.

Parameters

• group – group to check for terms in.

• prefix – prefix of terms to check occurrence for

• doc_limit – number of matching documents to stop checking after. None=unlimited. In-
teger or None. Default=None

• result_limit – number of terms to return results for. None=unlimited. Integer or None.
Default=None

• get_termfreqs – set to true to also get frequencies of terms in the db. Boolean. De-
fault=False

• stopwords – list of stopwords - term suffixes to ignore. Array of strings. Default=[]

Note; if group is specified as an empty string, this can be used to count occurrences of terms in all fields.
In this case, terms will be represented by the group name, followed by a tab, followed by the normal term.

calc_cooccur(group, prefix, doc_limit=None, result_limit=None, get_termfreqs=False, stopwords=[
])

Get cooccurrence counts of terms in the matching documents.

Warning - fairly slow (and O(L*L), where L is the average document length).

Causes the search results to contain counts for each pair of terms seen, in decreasing order of cooccurrence.
The count entries are of the form: [suffix1, suffix2, co-occurrence count] or [suffix1, suffix2, co-occurrence
count, termfreq of suffix1, termfreq of suffix2] if get_termfreqs was true.

Parameters

• group – group to check for terms in.

• prefix – prefix of terms to check co-occurrence for

• doc_limit – number of matching documents to stop checking after. None=unlimited. In-
teger or None. Default=None

• result_limit – number of terms to return results for. None=unlimited. Integer or None.
Default=None

• get_termfreqs – set to true to also get frequencies of terms in the db. Boolean. De-
fault=False

• stopwords – list of stopwords - term suffixes to ignore. Array of strings. Default=[]

Note; if group is specified as an empty string, this can be used to count occurrences of terms in all fields.
In this case, terms will be represented by the group name, followed by a tab, followed by the normal term.

class restpose.query.QueryIterator(query)
Iterate over the results of a query.

next()

30 Chapter 2. RestPose modules

RestPose Python bindings, Release 0.7.7

class restpose.query.Query(target=None)
Base class of all queries.

All query subclasses should have a property called “_query”, containing the query as a structure ready to be
converted to JSON and sent to the server.

filter(other)
Return the results of this query filtered by another query.

This returns only documents which match both the original and the filter query, but uses only the weights
from the original query.

Parameters other – The query to combine with this query.

Example A query returning documents in which the tag field contains the value ’foo’, fil-
tered to only include documents in which the tag field also contains the value ’bar’.

>>> query = Field(’tag’).equals(’foo’).filter(Field(’tag’).equals(’bar’))

and_maybe(other)
Return the results of this query, with additional weights from another query.

This returns exactly the documents which match the original query, but adds the weight from corresponding
matches to the other query.

Parameters other – The query to combine with this query.

Example A query returning documents in which the tag field contains the value ’foo’, but
with additional weights for any matches containing the value ’bar’.

>>> query = Field(’tag’).equals(’foo’).and_maybe(Field(’tag’).equals(’bar’))

class restpose.query.QueryField(fieldname, querytype, value, target=None)
A query in a particular field.

class restpose.query.QueryMeta(querytype, value, target=None)
A query for meta information (about field presence, errors, etc).

class restpose.query.QueryAll(target=None)
A query which matches all documents.

class restpose.query.QueryNone(target=None)
A query which matches no documents.

restpose.query.QueryNothing
alias of QueryNone

class restpose.query.CombinedQuery(*queries, **kwargs)
Base class of Queries which are combinations of a sequence of queries.

Subclasses must define self._op, the operator to use to combine queries.

class restpose.query.And(*queries, **kwargs)
A query which matches only the documents matched by all subqueries.

The weights are the sum of the weights in the subqueries.

Example A query returning documents in which the tag field contains both the value ’foo’ and
the value ’bar’.

>>> query = And(Field(’tag’).equals(’foo’),
... Field(’tag’).equals(’bar’))

2.2. Query 31

RestPose Python bindings, Release 0.7.7

class restpose.query.Or(*queries, **kwargs)
A query which matches the documents matched by any subquery.

The weights are the sum of the weights in the subqueries which match.

Example A query returning documents in which the tag field contains at least one of the value
’foo’ or the value ’bar’.

>>> query = Or(Field(’tag’).equals(’foo’),
... Field(’tag’).equals(’bar’))

class restpose.query.Xor(*queries, **kwargs)
A query which matches the documents matched by an odd number of subqueries.

The weights are the sum of the weights in the subqueries which match.

Example A query returning documents in which the tag field contains exactly one of the value
’foo’ or the value ’bar’.

>>> query = Xor(Field(’tag’).equals(’foo’),
... Field(’tag’).equals(’bar’))

class restpose.query.AndNot(*queries, **kwargs)
A query which matches the documents matched by the first subquery, but not any of the other subqueries.

The weights returned are the weights in the first subquery.

Example A query returning documents in which the tag field contains the value ’foo’ but not
the value ’bar’.

>>> query = AndNot(Field(’tag’).equals(’foo’),
... Field(’tag’).equals(’bar’))

class restpose.query.Filter(*queries, **kwargs)
A query which matches the documents matched by all the subqueries, but only returns weights from the first
subquery.

Example A query returning documents in which the tag field contains the value ’foo’, with
weights from this match, but only where the tag field also contains the value ’bar’.

>>> query = Filter(Field(’tag’).equals(’foo’),
... Field(’tag’).equals(’bar’))

class restpose.query.AndMaybe(*queries, **kwargs)
A query which matches the documents matched by the first subquery, but adds additional weights from the other
subqueries.

The weights are the sum of the weights in the subqueries.

Example A query returning documents in which the tag field contains the value ’foo’, with
weights from this match, but with additional weights for any of these documents in which the
tag field contains the value ’bar’.

>>> query = AndMaybe(Field(’tag’).equals(’foo’),
... Field(’tag’).equals(’bar’))

class restpose.query.MultWeight(query, factor, target=None)
A query which matches all the documents matched by another query, but with the weights multiplied by a factor.

32 Chapter 2. RestPose modules

RestPose Python bindings, Release 0.7.7

Example A query returning documents in which the tag field contains the value ’foo’, with
weights multiplied by 2.5.

>>> query = MultWeight(Field(’tag’).equals(’foo’), 2.5)

Build a query in which the weights are multiplied by a factor.

class restpose.query.TerminalQuery(orig, slice=None)
A Query which has had offsets or additional search options set.

This is produced from a Query when additional search options are set. It can’t be combined with other Query
objects, since the semantics of doing so would be confusing.

class restpose.query.SearchResult(rank, data, results)

object
Get the object associated with this result.

Requires an object generator to have been set, or the object to have been explicitly set earlier.

class restpose.query.SearchResults(raw, realiser=None)
The results returned from the server when performing a search.

total_docs = None
The total number of documents searched.

offset = None
The offset of the first result item.

size_requested = None
The requested size.

check_at_least = None
The requested check_at_least value.

matches_lower_bound = None
A lower bound on the number of matches.

matches_estimated = None
An estimate of the number of matches.

matches_upper_bound = None
An upper bound on the number of matches.

set_realiser(realiser)
Set the function to get objects associated with results.

This function will be passed two lists of result items:

•first, a list of result items which must be given objects to associate with them.

•second, a list of result items which it is desirable to associate an object with; this can be used to
perform bulk lookups.

And should assign the object to the object property of each of these.

estimate_is_exact
Return True if the value returned by matches_estimated is exact, False if it isn’t (or at least, isn’t guaranteed
to be).

items
The matching result items.

2.2. Query 33

RestPose Python bindings, Release 0.7.7

info
The list of information items returned from the server.

at_rank(rank)
Get the result at a given rank.

The rank is the position in the entire result set, starting at 0.

Raises IndexError if the rank is out of the range in the result set.

2.3 Errors

Errors specific to RestPose.

exception restpose.errors.RestPoseError

exception restpose.errors.CheckPointExpiredError
An error raised when a checkpoint has expired.

2.4 Resource

Resources for RestPose.

This module provides a convenient interface to the resources exposed via HTTP by the RestPose server.

class restpose.resource.RestPoseResponse(connection, request, resp)
A response from the RestPose server.

In addition to the properties exposed by restkit:restkit.Response, this exposes a json property, to
decode JSON responses automatically.

json
Get the response body as JSON.

Returns The response body as a python object, decoded from JSON, if the response Content-
Type was application/json.

Raises an exception if the Content-Type is not application/json, or the body is not valid JSON.

Raises RestPoseError if the status code returned is not one of the supplied status codes.

expect_status(*expected)
Check that the status code is one of a set of expected codes.

Parameters expected – The expected status codes.

Raises RestPoseError if the status code returned is not one of the supplied status codes.

class restpose.resource.RestPoseResource(uri, **client_opts)
A resource providing access to a RestPose server.

This may be subclassed and provided to restpose.Server, to allow requests to be monitored or modified.
For example, a logging subclass could be used to record requests and their responses.

Initialise the resource.

Parameters

• uri – The full URI for the resource.

• client_opts – Any options to be passed to restkit.Resource.

34 Chapter 2. RestPose modules

RestPose Python bindings, Release 0.7.7

user_agent = u’restpose_python/0.7.7’
The user agent to send when making requests.

request(method, path=None, payload=None, headers=None, **params)
Perform a request.

Parameters

• method – the HTTP method to use, as a string.

• path – The path to request.

• payload – A payload to send as the request body; may be a file-like object, or a string, or
a structure to send encoded as a JSON object.

• headers – A dictionary of headers. If not already set, Accept and User-Agent headers
will be added to this, and if there is a JSON payload, the Content-Type will be set to
application/json.

• params – A dictionary of parameters to add to the request URI.

2.4. Resource 35

RestPose Python bindings, Release 0.7.7

36 Chapter 2. RestPose modules

CHAPTER

THREE

DOCUMENTATION TODOS

Todo

Document the operators permitted.

(The original entry is located in /home/docs/sites/readthedocs.org/checkouts/readthedocs.org/user_builds/restpose-
py/checkouts/r0.7.7/restpose/client.py:docstring of restpose.client.FieldQuerySource.parse, line 7.)

Todo

This section needs rewriting for clarity (sorry!).

(The original entry is located in /home/docs/sites/readthedocs.org/checkouts/readthedocs.org/user_builds/restpose-
py/checkouts/r0.7.7/docs/overview.rst, line 147.)

Todo

Document the operators permitted.

(The original entry is located in /home/docs/sites/readthedocs.org/checkouts/readthedocs.org/user_builds/restpose-
py/checkouts/r0.7.7/restpose/client.py:docstring of restpose.client.FieldQuerySource.parse, line 7.)

Todo

document how to set realiser functions

(The original entry is located in /home/docs/sites/readthedocs.org/checkouts/readthedocs.org/user_builds/restpose-
py/checkouts/r0.7.7/docs/overview.rst, line 707.)

Todo

document what realiser functions need to do

(The original entry is located in /home/docs/sites/readthedocs.org/checkouts/readthedocs.org/user_builds/restpose-
py/checkouts/r0.7.7/docs/overview.rst, line 709.)

Todo

give an example realiser for use with Django

37

RestPose Python bindings, Release 0.7.7

(The original entry is located in /home/docs/sites/readthedocs.org/checkouts/readthedocs.org/user_builds/restpose-
py/checkouts/r0.7.7/docs/overview.rst, line 711.)

38 Chapter 3. Documentation todos

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

39

RestPose Python bindings, Release 0.7.7

40 Chapter 4. Indices and tables

PYTHON MODULE INDEX

r
restpose.client, ??
restpose.errors, ??
restpose.query, ??
restpose.resource, ??

41

